Playing With Fusion Inc
We design, manufacture, and market electronic products ranging from hobbyist grade up to industrial test and measurement.
- Sales@PlayingWithFusion.com
- 31201 State Route 9
Mackinaw, IL 61755
United States
-
product
Connectors, Header - Male
INT-10040
1x40 pin breakaway header. These headers have square pins and fit intostandard 0.1" breadboards. Scoring makes for convenient breaking into smaller headersfor all of your projects. Gold plated and RoHS compliant.
-
product
uSD Logger Shield
IFB-11001
This micro SD logger shield enables time-stamped logging of any signals measured by your Arduino project! Whether sensor shields, breakout boards or datalink connections, this shield will get your logger project up and running quickly. We've included an MCP79410 Real-Time-Clock module for flexible supply voltage timekeeping, which includes an on-board battery holder for a CR1220 battery (included, and is installed). In addition, the micro SD card is interfaced through a high-speed translator IC and supplied with a high-current LDO to meet the demands of the SD standard. Each pin of the Arduino has an offset pin attached for easy wiring to the massive 13x9 pin prototyping area, including the pins connected to the ICSP header! Whether you're using a Mega, Due or Uno, this board has your interfacing needs covered! Finally, the micro SD holder is a push to lock, push to unlock type, which makes it really easy to both install and uninstall your card.
-
product
MAX31855 K-Type Thermocouple Sensor Breakout
SEN-30001-K
Breakout board for the MAX31855K digital thermocouple interface IC. Measured temperature range is -270C-1372C with known thermal characteristics and output resolution of 0.25C. This sensor supports a larger operating range (specifically in the negative range) than its predecessors, the MAX6674 and MAX6675, though it is not pin-pin compatible. This board is interfaced with a 0.1" 1x5 pin header, has a vertical mini thermocouple connector and four mounting holes for standoffs and 4-40 screws.
-
product
MAX31856 Thermocouple Sensor Arduino Shield
SEN-30007-ST
Quad channel thermocouple Arduino shield based on the MAX31856 universal digital thermocouple interface IC. This is an exciting update of the MAX31855, with improvements in resolution (19 vs 14 bits), on-board temperature reference (6 vs 4 bits), and compensation (fully compensated vs nonlinear correction required). The MAX31856 is interfaced via 4-wire SPI with options for interrupt triggering. An LDO and a high-speed level shifter are included on ALL device pins to allow interfacing with to any Arduino - both 3.3V and 5.0V variants - without sacrificing device performance in any operating condition.
-
product
Basic Quad J-Type Analog Thermocouple Amplifier
SEN-30103-J0
Analog thermocouple amplifier board based on the AD849x from Analog Devices (successor of the AD597). This quad-channel thermocouple board converts the very low voltage signal from a thermocouple to a highly-linear, 0.005V/C output with either 0V or 1.245V offset (both configurations stocked) while removing unwanted noise from the signal. Many supply and output configurations are available with this board, though the PCB was designed with Arduino in mind. Specifically, the output header will plug directly into a standard Arduino Uno or Mega, with a pin-for-pin match for power supply, ground and analog outputs. With a 5V Arduino, temperatures from 0C to 1,000C are possible with the 0V offset board and -249C to 750C with the 1.245V offset board. If using a 3.3V microcontroller (Due, etc), the board must be supplied with no more than 3.3V to avoid damaging the microcontroller. Temperature measurement range is dependent on the supply voltage. It is possible to supply the board with higher voltages to allow temperature measurement over the entire operating range of the K-Type and J-Type thermocouples, allowing use with more capable data acquisition equipment.
-
product
TMD37003 cRGB Color and Proximity Sensor
SEN-36004
Fully integrated carrier board designed to get the most out of the TMD37003 cRGB (color with IR compensation) and Proximity Sensor from AMS. This means that the board includes a 1.8V-5V input range LDO and high-speed signal voltage translation on all IO pins. In addition, we've added a high output white LED that is tuned to the light temperature range of the TMD37003 IC. This makes sensing color of close-proximity objects possible, such as in robotic color sorting operations. As on many of our boards, we've included 4-40 sized mounting holes to make installation easy. The IC functions are interfaced via a 0.1" header, which includes power (Vdd and GND), I2C interface (again, fully translated) and a 3.3V input to power the proximity (IR) LED. The on-board LED is turned on with a logic 'HIGH' applied to the LED pin and is powered with Vdd.
-
product
Lightning Sensors
Scientific Sales boasts a full line of lightning detectors and lightning warning alarms to protect people from unpredictable and deadly lightning strikes. Lighting monitors can detect electrical activity from up to 40 miles away and track a storm as it approaches with audible and LED alarms. Choose from a permanent lightning detector or hand-held lightning sensors for accurate and reliable lightning detection. Scientific Sales’ lightning monitors and lightning sensors are professionally rated and are used by NASA, major airlines and professional sports teams. Industry related applications of lightning meters include construction and drilling sites, golf courses, outdoor event venues, university facilities and more.
-
product
Bi-Directional Level Translator
IFB-10001
Easily connect Arduino or other 5V microcontrollers to ~3.3V sensors. Based on the TI TXB0108 auto-sensing, bi-directional level translator, this module provides access to all 8 channels of the TXB0108 and has a built-in 300mA LDO with 200mV max dropout voltage at full load. Regulated 3.3V output allows this single board to both interface withandpower 3.3V sensors. An important feature of this module is the ability to operate SPI and other digital lines (not including I2C) at high-speed, whereas the 'NXP level shifter' maxes out at 400kHz and resistor dividers fail much earlier. The TXB0108, integrated with the LP3981 LDO, provide a fast, reliable solution to mismatched interface voltages that exceeds the performance of other solutions.
-
product
Lightning "Emulator" Shield
SEN-39002
Arduino shield, ideal for AS3935 lightning sensor development. The lightning "emulator" generates a RF signal that mimics lightning strikes. This board is in an Arduino Uno form factor, and only uses GPIO and I2C, so can be stacked on many form factors (developed on an Uno and Mega).
-
product
Power Supplies
A power supply is an electrical device that supplies electric power to an electrical load. The main purpose of a power supply is to convert electric current from a source to the correct voltage, current, and frequency to power the load.
-
product
Arduino CAN Shield
IFB-10003-IWP
CAN (Controller Area Network) communication has become ubiquitous in industry. It is used in automotive applications (part of OBD and many other datalinks), on-highway trucks (J1939), industrial machinery and instrumentation, and equipment applications (factory automation). This shield is designed to provide a CAN 2.0 front-end interface for 5V Arduino modules (Uno, Mega, etc). The module uses SPI to communicate to the Arduino, and requires an aditional chip select pin. An optional interrupt line to the MCP2515 and two LEDS are also provided. The chip select and interupt lines are selected via zero ohm resistors and have several configuration options for flexibility stacking additional shields. A set of stackable headers is included with this board, not installed. An optional on-board voltage regulator may be used to supply 7.5V to the Arduino's 'Vin' pin (which is regulated to 5V by the Arduino's on-board LDO). The CAN shield regulator supports a wide input range of 9V to 32V. This makes it possible to cleanly build a stand-alone CAN node (remote sensor) without the need for a separate Arduino power supply!
-
product
Dual MAX31865 PT-100 RTD to Digital Breakout
SEN-30202-PT100
Dual channel breakout board for the MAX31865 RTD-to-Digital converter from Maxim. Two breakout hardware configurations are available standard, designed to interface with either the PT100 or PT1000 platinum RTDs. For non-standard applications, including thermistors, custom hardware configurations can be accommodated. Contact Technical Support for more information. RTD devices may be wired in 2, 3 or 4-wire configurations using the 4-pin screw terminal input. The MAX31865 breakout is interfaced via 3 or 4-wire SPI with a data-ready output for specific operating modes. An LDO and a high-speed level shifter are included to allow interfacing with microcontroller devices between 3.0V and 5V (all Arduinos, Raspberry PI, etc) without sacrificing device performance.
-
product
ST VL6180X Time of Flight Sensor
SEN-36001
Highly integrated breakout board for the ST Micro VL6180X Time of Flight (ToF) range finder sensor. This sensor has many uses in the robotics, cell phone and gesture recognition space. It has two programmable GPIO pins, and most importantly, measures absolute distance up to 100mm. The SEN-36001 includes a VL6180X IC centered between two 4-40 sized mounting holes with onboard 2.8V LDO and voltage translation to handle interface voltages from 3V to 5V. The board is interfaced via an I2C interface and all IC pins have been broken out to a 0.1" pin header. Example code for the Arduino platform is available below and includes code for both the proximity measurement and ambient light sensing capabilities.
-
product
Basic Quad K-Type Analog Thermocouple Amplifier
SEN-30103-K1
Analog thermocouple amplifier board based on the AD849x from Analog Devices (successor of the AD597). This quad-channel thermocouple board converts the very low voltage signal from a thermocouple to a highly-linear, 0.005V/C output with either 0V or 1.245V offset (both configurations stocked) while removing unwanted noise from the signal. Many supply and output configurations are available with this board, though the PCB was designed with Arduino in mind. Specifically, the output header will plug directly into a standard Arduino Uno or Mega, with a pin-for-pin match for power supply, ground and analog outputs. With a 5V Arduino, temperatures from 0C to 1,000C are possible with the 0V offset board and -249C to 750C with the 1.245V offset board. If using a 3.3V microcontroller (Due, etc), the board must be supplied with no more than 3.3V to avoid damaging the microcontroller. Temperature measurement range is dependent on the supply voltage. It is possible to supply the board with higher voltages to allow temperature measurement over the entire operating range of the K-Type and J-Type thermocouples, allowing use with more capable data acquisition equipment.